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EXECUTIVE SUMMARY 

Modeling a multilayer fabric composite for engine containment systems during a fan blade-out 
event has been a challenging task.  Nonlinear transient (explicit) finite element analysis has the 
greatest potential of any numerical approach available to industry for analysis of these events.  
Significant research is still required to overcome difficulties with numerical stability, material 
modeling (pre- and postfailure), and standardizing modeling methods to achieve accurate 
simulation of the complex interactions between individual components during these high-speed 
events.  The primary focus of this research was to develop the methodology for testing, 
modeling, and analyzing a typical fan blade-out event in a multilayer fiber fabric composite 
containment system.  ABAQUS finite element code was used to verify the basic material model 
(prefailure state) developed through laboratory testing.  LS-DYNA was the primary modeling 
tool used in the explicit finite element analysis of ballistic events. 
 
During the Fourth Federal Aviation Administration (FAA) Uncontained Engine Debris 
Characterization Modeling and Mitigation Workshop (held in May 2000 at SRI International, 
Menlo Park, CA), a representative of Honeywell Engines, Systems & Services presented the 
capability of modeling complicated engine hub-burst and fan blade-out events.  Predicting most 
of the event with high confidence was shown.  At the same time, SRI presented their efforts on 
modeling the material characteristics within LS-DYNA and developing a new composite fiber 
material called Zylon  that appeared to be stronger, lighter, and more temperature-resistant than 
Kevlar .  Both parties showed interest in each other’s work, and both agreed they could benefit 
from each other if collaborative mechanisms could be arranged.  After the workshop, Honeywell 
and SRI contacted each other and began talks of a joint project.  The FAA, National Aeronautics 
and Space Administration (NASA) Glenn Research Center (GRC), and Arizona State University 
(ASU) were later invited into the discussion, resulting in this FAA-funded research under the 
Aircraft Catastrophic Prevention Program and the Airworthiness Assurance Center of Excellence 
Program. 
 
The goal of this research was to use the technical strengths of Honeywell, SRI, and the ASU for 
developing a robust explicit finite element analysis modeling methodology for the purposes 
mentioned above.  Since the development of an experimental set of data to support the 
calibration of the finite element models is essential, various experimental methods to measure 
material and structural response of the fabrics were conducted.  NASA GRC, under the NASA 
Aviation Safety Program, conducted a series of engine containment ring tests that were used for 
modeling in this program.   
 
Each member of the team took a leadership role and developed a comprehensive report 
describing the details of the  research task and the findings.  The complete FAA report is 
comprised of the following four separate reports (parts 1 through 4).   
 
• 

• 

• 

Part 1:  Static Tests and Modeling by Arizona State University Department of Civil 
Engineering 

Part 2:  Ballistic Testing by NASA Glenn Research Center 

Part 3:  Material Model Development and Simulation of Experiments by SRI  International
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• Part 4:  Model Simulation for Ballistic Tests, Engine Fan Blade-Out, and Generic Engine 
by Honeywell Engines, Systems & Services 

Ballistic impact tests were conducted at NASA GRC on dry Kevlar 49  and Zylon AS  fabric 
specimens in a test configuration designed to simulate its application in a turbine engine fan 
containment system.  This report (part 2 of 4) provides data on projectile velocity, impact and 
residual energy, and fabric deformation for a number of different test conditions. 
 
A single-fabric architecture was used for the Kevlar  material and two different architectures 
were used for the Zylon , one similar to the Kevlar and another significantly lighter.  Twenty-
five-cm (10-in.)-wide continuous strips of the fabric were wound around a steel ring with a 
diameter of 102 cm.  The ring was placed in front of a 20-cm (7.9-in.)-diameter gas gun at a 
slight incline so that the projectile passed over the leading edge of the ring and impacted the 
fabric through a slot from the general direction of the center of the ring.  The projectile was a flat 
piece of 304L stainless steel 10.2 cm (4.0 in.) long, 5.1 cm (2.0 in.) high, and 0.48 cm (0.188 in.) 
thick, with a mass of approximately 320 gm (0.7 lb).  The projectile impacted the specimen edge 
on.  Under these conditions, Zylon was able to absorb almost three times the energy of the 
equivalent weight Kevlar. 
 
 

 vi



1.  INTRODUCTION. 

1.1  PURPOSE. 

This research effort was undertaken as a direct result of discussions from the Fourth Federal 
Aviation Administration (FAA) Uncontained Debris Characterization Modeling and Mitigation 
Workshop (held in May 2000 at SRI International).  A team effort between government, 
academia, and industry was seen as an excellent opportunity to transition fabric modeling and 
testing research that was being sponsored by the FAA Aircraft Catastrophic Failure Prevention 
Program and the National Aeronautics and Space Administration (NASA) Aviation Safety 
Program into commercial aircraft. 

1.2  BACKGROUND. 

International aviation regulatory bodies, such as the FAA in the United States and the Joint 
Aviation Authorities in Europe, require that in commercial jet engines a system must exist that 
will not allow any single compressor or turbine blade failure to perforate the engine case during 
engine operation [1].  They further require that jet engine manufacturers demonstrate, through a 
certification test, that the most critical blade be contained within the engine when a blade is 
released while the engine is running at full-rated thrust.  The most critical compressor blade in 
the engine, in terms of maximum kinetic energy, is invariably the fan blade, and the system 
designed to prevent it from penetrating the engine is called the fan containment system. 

There are two general types of fan containment systems, commonly referred to as hard-wall and 
soft-wall systems.  Hard-wall systems consist of a relatively stiff section of the engine case that 
has sufficient strength to prevent perforation if impacted by a blade.  Generally, there is 
relatively little deflection involved during impact with a hard-wall system.  Soft-wall systems 
usually consist of a thin inner ring, surrounded by layers of dry fabric, most commonly Kevlar .  
Between the inner ring and the fabric there is usually some structural material, such as 
honeycomb, to provide stiffness to the case.  Energy absorption in soft-wall systems is 
accompanied by large deformation in the fabric. 

The process of designing a containment system is based largely on empirical methods supported 
by impact testing of subscale components.  However, there is strong motivation on the part of jet 
engine manufacturers to develop numerical models that can be used to help in the design process 
of fan containment systems, thereby reducing the cost of testing and increasing confidence and 
reliability in the design. 

A number of research and commercial computer programs are available that can simulate the 
impact of a released fan blade on the case (a blade-out event).  These are generally transient, 
explicit integration finite element codes [2 and 3].  The codes themselves are accurate and have 
been validated by years of use, but the constitutive, failure, and contact models are still the 
subject of active research.  A large body of data and research studies exist with regard to high 
strain rate behavior impact response, and constitutive/failure models for metals [4, 5, and 6].  
While there is data available in the literature on the impact response of fabrics [7, 8, and 9], and 
models have been developed to simulate fabric impact response [10, 11, and 12] the body of 
literature is much smaller than for metals.  In addition, studies tend to focus on applications other 
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than jet engines, such as body armor, and generally consider impacts involving a relatively small 
number of fabric layers. 

This study was one of several being conducted by a FAA-sponsored Airworthiness Assurance 
Center of Excellence (AACE) team that included Arizona State University, Honeywell Engines, 
Systems & Services, SRI, and NASA Glenn Research Center.  The aim of the AACE program 
was to develop improved computational tools for designing fabric-based engine containment 
systems.  The objective of this particular study was to provide impact response data on fabric 
systems that would be used for calibrating and verifying the improved numerical models.  A 
secondary objective was to compare the impact energy absorption response of two different 
fabrics, Kevlar and Zylon  in two different fabric architectures.  The impact conditions were 
selected to be more representative of engine blade-out events than is typically seen in the 
literature, while keeping the test as simple and reproducible as possible. 

2.  METHODS. 

The general experimental procedure used in this study involved conducting ballistic impact tests 
on layers of dry fabric.  The impact energy was held constant, with the exception of a small 
number of tests, while the number of layers of fabric was varied.  The fabric was wound around a 
circular fixture placed in front of a gas gun at a slight incline such that the projectile exited the 
gun barrel, passed over the leading edge of the ring, and impacted the fabric from the inside. 

2.1  MATERIALS. 

Fabrics, woven from two different fiber materials, Kevlar 49  and Zylon AS , were tested.  
Kevlar is a material with a long history in impact applications, in general, and fan containment 
systems, in particular [13 and 14].  Zylon, sometimes referred to as PBO (poly-benzoxazole), has 
been under development more recently.  A number of studies have shown that Zylon 
demonstrates superior performance over Kevlar under laboratory impact test conditions [15 and 
16].  In this study, Kevlar was tested in a single-fabric architecture, while two-fabric 
architectures, were used for Zylon.  The fiber and weave parameters of the materials used in this 
study are shown in table 1 [17].  

TABLE 1.  FABRIC PROPERTIES 

Zylon AS PBO 
Kevlar-49 
P-Aramid 

  Light Heavy Standard 
Volume density (g/cm3) 1.54 1.54 1.44 
Yarn denier (measured) (g/9km) 500 1500 1490 
Yarn linear density (mg/cm) 0.556 1.654 1.656 
Yarn count (yarns/in) 35 x 35 17 x 17 17 x 17 
Yarn count (yarns/cm) 13.8 x 13.8 6.7 x 6.7 6.7 x 6.7 
Fabric ply thickness (mm) 0.21 0.28 0.28 
Fabric areal density (g/cm2) 0.01575 0.0223 0.02275 
Degree of crimp warp yarns (%) 3.1 2.2 1.1 
Degree of crimp fill yarns (%) 0.6 0.9 0.8 
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2.2  TEST CONFIGURATION. 

The projectile used in the impact tests was a flat, rectangle-shaped piece of 304L stainless steel, 
10.2 cm (4.0 in.) long, 5.1 cm (2.0 in.) high, and 0.48 cm (0.188 in.) thick (figure 1), with a mass 
of approximately 320 gm (0.7 lb).  The front edge of the projectile was machined with a full 
radius.  It exited the gun barrel in such a way that the long dimension of the projectile was in the 
direction of travel, the height dimension was vertical and the thickness dimension was side to 
side. 
 

 
FIGURE 1.  304L STAINLESS STEEL PROJECTILE 

 
The intended projectile velocity was 275 m/sec (900 ft/sec), except in a few tests involving one 
or two layers of fabric, in which case the impact velocity was approximately 100 m/sec 
(328 ft/sec).  Actual impact velocities were measured using a high-speed digital video camera 
located above the target. 
 
The gas gun used to accelerate the projectile consisted of a pressure vessel with a volume of 
0.35 m3 (12.5 ft3), a gun barrel with a length of 12.2 m (40 ft), and an inner diameter of 20.32 cm 
(8.00 in.).  The pressure vessel and the gun barrel were mated by a flange on each side with a 
number of layers of Mylar  sheets sandwiched between the flanges to seal the pressure vessel 
and acting as a burst valve.  Helium gas was used as the propellant.  The pressurized helium was 
released into the gun barrel by applying a voltage across a Nichrome wire embedded in the 
Mylar sheets, causing the Mylar sheets to rupture.  The projectile was supported in rigid foam 
inside an aluminum can-shaped cylindrical sabot that just fits inside the gun barrel.  The sabot 
and foam projectile support were stopped at the end of the gun barrel by a thick steel plate with a 
rectangular slot large enough to allow the projectile to pass through.  The gun barrel was 
evacuated to reduce blast loading on the specimen and to reduce the amount of pressure needed 
to achieve the desired impact velocity.  The gas gun and test setup are shown in figures 2 and 3. 
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FIGURE 2.  SCHEMATIC OF TEST SETUP 
 
 

 
 

FIGURE 3.  GAS GUN USED FOR THE IMPACT TEST 
 
The fixture used to hold the fabric was a 2.5-cm (1-in.)-thick metal ring with a 25 cm (10 in.) 
height and a diameter of 102 cm (40 in.).  A 25-cm (10-in.)-wide fabric strip was rolled around 
the ring under controlled tension to makeup the desired number of layers.  The ring had a 25.4-
cm (10-in.) opening and was placed in front of the gun barrel at a 15o incline such that the 
projectile, after exiting the gun barrel passed over the front edge of the ring, passed through the 
opening in the fixture and impacted the fabric from the general direction of the center of the ring.  
The test fixture and specimen are shown in figure 4. 
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FIGURE 4.  TEST FIXTURE WITH KEVLAR SPECIMEN IN PLACE 
 
Each fabric specimen consisted of a continuous 25-cm (10-in.)-wide fabric strip wrapped around 
the test fixture under controlled tension to produce the desired number of layers.  The beginning 
and end of the continuous strip were held with an epoxy adhesive and were located 180 degrees 
away from the impact location.  The tension in the fabric strip was controlled by placing a fabric 
spool on the axis of an electric motor with controllable torque, passing the fabric strip around a 
roller mounted on a load cell and then around the fixture ring (figure 5).  The fixture ring was 
then rotated on bearings while maintaining a torque on the electric motor such that the load cell 
reading remained constant.  The tension in the fabric was controlled to be 24.5 N (5.5 lb).   
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FIGURE 5.  SCHEMATIC OF DEVICE USED TO CONTROL TENSION WHILE WINDING 

THE FABRIC SPECIMEN ON THE FIXTURE 
 
High-speed digital video cameras (Phantom 5, Photosonics Inc., Burbank, CA) were used to 
record the position and orientation of the projectile during the experiment.  The recording speed 
was 11,200 frames per second, with a 256 by 256 pixel resolution.  For a limited number of tests, 
the recording rate was increased to 38,461 frames per second, with a resolution of 256 by 64 
pixels.  One camera was located directly above the impact point and the other at an oblique 
angle.  The positions of the cameras are shown in figure 6.  A laboratory coordinate system was 
established, with an origin at the impact point on the fabric (center of the fabric strip), an X axis 
in the direction of the gun barrel, and a Z axis pointed vertically upward.  The upper camera was 
calibrated to have a scale of 5.610 pixels/cm (14.25 pixels/in.) in the horizontal plane at the top 
of the projectile and 5.528 pixels/cm (14.04 pixels/in.) in the horizontal plane of the center of the 
projectile.  This calibration applied to both the X and Y directions and for both recording speeds, 
as the field of view in the Y direction was reduced by a factor of 4 for the higher recording 
speed.   
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For each test, the position of two or more points on the projectile was recorded as a function of 
time.  The impact velocity and residual velocity (velocity after perforating the fabric) were 
determined by fitting a straight line to the position data, while in free flight before and after 
impact, and averaging the slopes of the resulting lines.  In general, the projectile was obscured by 
the specimen during the impact itself, so it was not possible to obtain accurate enough position 
data to calculate the projectile deceleration and the resulting force on the projectile during the 
impact.  The fabric deformation at the center of the impact point on the specimen, as viewed by 
the overhead camera, was also recorded and plotted for each test. 
 

(0, 0, 175.3) cm (0, 224.8 138.4) cm 

Z 

Z 
X 

Y 

 
FIGURE 6.  SCHEMATIC OF CAMERA LOCATIONS 

 
3.  RESULTS AND DISCUSSION. 

Twenty-nine impact tests were conducted, fourteen on Kevlar 49, nine on the lighter weight 
Zylon material and six on the heavier weight Zylon.  Figures 7 and 8 show still images taken 
from typical video data from two tests.  Spatial resolution was 256 pixels over a length of 
approximately 25 cm, or approximately 0.1 cm/pixel.  Because of the relatively small amount of 
motion of the projectile between frames, this resolution could lead to inaccurate velocity 
measurement if only two frames were used to calculate velocity.  Much greater accuracy was 
possible by fitting a curve to the displacement data over multiple frames.  
 
Tables 2 and 3 summarize the results of the test program.  More detailed information on each 
test, including projectile position as a function of time and fabric deformation, is given in 
appendix A.   
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FIGURE 7.  SELECTED IMAGES FROM TEST LG407, OBLIQUE VIEW 

 
 

 
FIGURE 8.  SELECTED IMAGES FROM TEST LG420, TOP VIEW 
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TABLE 2.  PROJECTILE IMPACT AND RESIDUAL VELOCITY 

Test Material 

Number 
of 

Layers 

Projectile 
Mass 
(g) 

Impact 
Velocity 
(m/sec) 

Exit 
Velocity 
(m/sec) 

LG403 Kevlar 4 318.4 274 258 
LG404 Kevlar 8 317.8 273 250 
LG405 Kevlar 24 319.0 274 151 
LG409 Kevlar 8 316.0 271 246 
LG410 Kevlar 4 316.4 278 264 
LG411 Kevlar 24 314.8 270 126 
LG424 Kevlar 8 320.9 254 227 
LG427 Kevlar 24 317.9 279 185 
LG429 Kevlar 16 316.2 279 219 
LG432 Kevlar 16 320.0 273 198 
LG433 Kevlar 1 316.7 119 112 
LG434 Kevlar 1 315.9 117 110 
LG444 Kevlar 2 316.4 106 84.7 
LG449 Kevlar 2 316.2 105 85.0 
LG406 Light Zylon 4 319.5 273 255 
LG408 Light Zylon 8 318.0 276 241 
LG412 Light Zylon 4 318.4 243 223 
LG413 Light Zylon 8 319.9 275 237 
LG417 Light Zylon 8 314.6 272 241 
LG425 Light Zylon 8 316.6 277 245 
LG426 Light Zylon 16 316.8 277 192 
LG407 Light Zylon 24 316.1 275 0 
LG414 Light Zylon 24 315.9 251 0 
LG420 Heavy Zylon 8 316.3 280 191 
LG421 Heavy Zylon 8 317.6 262 155 
LG422 Heavy Zylon 4 315.8 280 237 
LG423 Heavy Zylon 4 315.1 243 192 
LG430 Heavy Zylon 12 315.9 279 109 
LG428 Heavy Zylon 16 317.9 277 0 
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TABLE 3.  TEST ENERGY AND MAXIMUM DEFLECTION 

Test 

Impact 
Kinetic Energy 

(Joules) 

Exit Kinetic 
Energy 
(Joules) 

Energy 
Absorbed
(Joules) 

Approximate 
Maximum Deflection

(cm) 
LG403 11980 10560 1419 8.3 
LG404 11877 9902 1975 8.9 
LG405 11949 3645 8303 11.4 
LG409 11561 9583 1978 8.3 
LG410 12224 10996 1227 7.6 
LG411 11478 2494 8984 12.7 
LG424 10368 8251 2117 8.3 
LG427 12363 5458 6904 8.9 
LG429 12270 7614 4656 8.9 
LG432 11933 6280 5653 10.2 
LG433 2226 1981 244  
LG434 2163 1912 251  
LG444 1790 1135 654  
LG449 1748 1143 604  
LG406 11888 10347 1540 10.2 
LG408 12071 9265 2805 11.4 
LG412 9418 7946 1471 12.1 
LG413 12063 8948 3115 11.4 
LG417 11627 9143 2484 11.4 
LG425 12125 9506 2618 10.8 
LG426 12159 5859 6300 12.7 
LG407 11946 0 11946  
LG414 9939 0 9939  
LG420 12354 5739 6615 12.7 
LG421 10886 3807 7078 11.4 
LG422 12335 8833 3501 10.8 
LG423 9320 5790 3529 11.4 
LG430 12312 1859 10452 14.0 
LG428 12174 0 12174  

 
In all tests, except tests LG407, LG414, and LG428, the projectile perforated the fabric 
specimen.  The failure was generally along the line defined by the leading edge of the projectile.  
In the initial plies, the failure was highly localized along this line, and to the naked eye 
resembled a cut in the fabric.  As the projectile progressed through the layers, the failure point 
remained generally along the same line, but there was significant fraying at the ends of the failed 
yarns.  The fraying is indicative of individual fibers within the yarn failing at different locations.  
The same phenomena existed in cases where full perforation did not occur.  In these cases, it was 
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clear that failure initiated at the corners of the projectile.  There were several plies where there 
were holes at the corner locations while the material in between remained intact.  Progressing 
from the outer layers to the inner layers, the holes grew in size until there was failure across the 
total leading-edge region. 
 
The impact, exit and absorbed kinetic energy, shown in table 3, were calculated from the mass 
and velocity of the projectile before and after perforation.  As shown in table 2, in all but three 
tests, the projectile perforated the fabric specimen.  Figure 9 shows the energy absorbed as a 
function of the number of fabric layers in each test.  The arrows on selected symbols indicate that 
in these tests the projectile did not penetrate the specimen (all of the kinetic energy was 
absorbed) and more energy could have been absorbed.  The lines in the figure are quadratic 
curve fits to the data.  Figure 10 shows the same data, but the energy is normalized by the areal 
mass of each specimen.  The areal mass of the specimen is defined as the areal mass per layer, in 
grams per square centimeter, times the number of layers. 
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FIGURE 9.  ENERGY ABSORBED AS A FUNCTION OF NUMBER OF FABRIC LAYERS 
 
It is clear from figures 9 and 10 that for a given weight and under these impact conditions, Zylon 
is able to absorb significantly more energy than Kevlar, and the heavier Zylon is more effective 
than the lighter version of the same material.  The heavier weight Zylon and the Kevlar material 
were very similar in areal weight, fiber count, ply thickness, and yarn denier.  Figure 10 
illustrates that the normalized absorbed energy is relatively insensitive to the number of layers of 
material.  For the Kevlar material, the average normalized absorbed energy is 13.5 kJ-g/cm2.  For 
the lighter weight Zylon, this value is 22.9 kJ-g/cm2, and for the heavier weight Zylon, the value 
is 38.9 kJ-g/cm2.  From a practical point of view, this means that for the same weight of material, 
the thick Zylon can absorb almost three times as much energy than the Kevlar material under the 
conditions of this test.   
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FIGURE 10.  NORMALIZED ENERGY ABSORBED AS A FUNCTION OF 

NUMBER OF FABRIC LAYERS 
 
The two data points for the lighter weight Zylon corresponding to tests where the projectile did 
not perforate the fabric indicate that if perforation occurs, there is less energy absorbed than the 
specimen is capable of absorbing when perforation does not occur.  This is consistent with data 
in the literature for fabric materials where it has been shown that, typically, as the impact energy 
is increased until perforation occurs, a plot of absorbed energy as a function of impact velocity 
will show a sudden decrease after the ballistic limit velocity is exceeded [18].  Beyond this point, 
the absorbed energy may increase, decrease, or remain constant. 
 
The maximum deflection in the fabric was determined from plots of the fabric deformation 
shown in appendix A.  Because of the progressive nature of failure in the specimen, once failure 
initiated, the shape of the fabric was difficult to accurately measure.  Therefore, the maximum 
deflection in the fabric is accurate only to within approximately 0.5 cm.  The maximum 
deflection in the fabric during the test is shown in figure 11. 
 
The figure shows a significant amount of scatter.  Some of this is attributed to the difficulty in 
obtaining an accurate measurement of the maximum deflection.  Despite the scatter, there is a 
definite trend in the data.  The deflection data falls into three general ranges of normalized 
energy absorbed, corresponding to the three different specimen types.  The figure illustrates that 
the difference in maximum deflection is greater between Kevlar and 500-denier Zylon than that 
between the lighter and heavier Zylon.  The increase in maximum normalized absorbed energy 
between the two different weight Zylon specimens is relatively large, while the increase in 
maximum deflection is moderate.   
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FIGURE 11.  MAXIMUM DEFLECTION IN FABRIC 

(The maximum deflection occurred just prior to full 
perforation if the projectile perforated the fabric.) 

 
4.  CONCLUDING REMARKS. 

In this study, ballistic impact tests were conducted at National Aeronautics and Space 
Administration Glenn Research Center on dry Kevlar 49 and Zylon AS fabric specimens in a test 
configuration designed to simulate its application in a turbine engine fan containment system. 
 
The test configuration described herein was designed to be somewhat representative of fabric 
containment systems used in jet engines, while maintaining repeatability and simplicity in the 
test.  The data obtained from these tests were used to develop improved computational models of 
fabric containment systems.  The results show that under the conditions of this test, Zylon is able 
to absorb almost three times as much energy than Kevlar when compared on an overall weight 
basis.  The normalized energy absorbed is relatively insensitive to the number of layers of 
material.  This allows for a fairly simple design procedure if the assumption is made that the 
amount of energy absorbed per unit weight is independent of the number of layers of material.  
Under the conditions of this test, the heavier weight Zylon material performed better than the 
lighter weight material, for the same overall weight.   
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APPENDIX A—FABRIC DEFORMATION 
 
The following graphs display the deformation of the fabric in a horizontal plane passing through 
the center of the impact point.  The deflection is plotted as a sequence of curves measured from 
the camera video images. 
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